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Abstract

A common pathological hallmark of neurodegenerative disorders is neuronal

cell death, accompanied by neuroinflammation and oxidative stress. The

vasoactive intestinal peptide (VIP) is a pleiotropic peptide that combines neu-

roprotective and immunomodulatory actions. The gene therapy field shows

long-term promise for treating a wide range of neurodegenerative diseases

(ND). In this study, we aimed to investigate the in vitro efficacy of transduc-

tion of microglia using lentiviral gene therapy vectors encoding VIP

(LentiVIP). Additionally, we tested the protective effects of the secretome

derived from LentiVIP-infected “immortalized human” microglia HMC3 cells,

and cells treated with Synthetic VIP (SynVIP), against toxin-induced neurode-

generation. First, LentiVIP, which stably expresses VIP, was generated and

purified. VIP secretion in microglial conditioned media (MG CM) for

LentiVIP-infected HMC3 microglia cells was confirmed. Microglia cells were

activated with lipopolysaccharide, and groups were formed as follows: 1) Con-

trol, 2) SynVIP-treated, or 3) LentiVIP-transduced. These MG CM were applied

on an in vitro neurodegenerative model formed by differentiated (d)-SH-SY5Y

cells. Then, cell survival analysis and apoptotic nuclear staining, besides

measurement of oxidative/inflammatory parameters in CM of cells were

performed. Activated MG CM reduced survival rates of both control and toxin-
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applied (d)-SH-SY5Y cells, whereas LentiVIP-infected MG CM and SynVIP-

treated ones exhibited better survival rates. These findings were supported by

apoptotic nuclear evaluations of (d)-SH-SY5Y cells, alongside oxidative/

inflammatory parameters in their CM. LentiVIP seems worthy of further

studies for the treatment of ND because of the potential of gene therapy to

treat diseases effectively with a single injection.
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1 | INTRODUCTION

Over the past decade, remarkable progress has been
made in our understanding of the pathophysiology of
neurodegenerative diseases (ND). In this context, recent
data has contributed to our knowledge of the potential
pathways in the process of apoptosis and neuronal loss,
and the oxidative/antioxidative mechanisms, which are
involved in the pathogenesis of ND, as well (X. Sureda
et al., 2011). The crucial role of immune cells, especially
of microglia and mast cells, in the pathogenesis of ND
has also recently been demonstrated. Namely, overactiva-
tion and excessive proliferation of microglia by various
stimuli can induce the release of multiple mediators that
induce neuroinflammation and oxidative stress, two
important processes associated with neurodegeneration
(Roqué & Costa, 2017).

Microglia are small, stellate cells located primarily
along capillaries of the central nervous system (CNS) that
function as phagocytotic cells. Since microglial cells are
considered as a part of the mononuclear phagocytotic sys-
tem, they play a defensive and beneficial role in main-
taining an environment that supports the functioning
and survival of neurons, partially through their ability
to mediate controlled inflammatory reactions (Block
et al., 2007). They normally account for about 5% of all
glial cells in the adult CNS, but in regions of injury and
disease, they proliferate and become actively phagocy-
totic. In response to injury or numerous pathological
stimuli, activated microglia move through a series of
morphological and functional changes, and become
reactive microglial cells. When activated, they begin to

proliferate, retract their ramified extensions, become
more amoeboid in shape, and more motile, besides
gaining the increased ability to phagocytize debris
(Stence et al., 2001). In the activated state, microglia are
known to release both protective and cytotoxic factors,
through which they can influence neuronal cell viability
and neuron functions (Block et al., 2007; Luo &
Chen, 2012; Ransohoff & Perry, 2009).

In case the process of microglial response is
dysregulated, reactive microglia may release many pro-
inflammatory cytokines and induce the production of
reactive oxygen species (ROS). In this situation, micro-
glia may act as a major contributor to oxidative and neu-
roinflammatory damage (Block et al., 2007). These cells
can switch phenotypes when exposed to specific growth
factors or cytokines, as well. In vitro exposure to lipo-
polysaccharide (LPS), which is a lipid-linked polymer of
bacterial cell wall components found in gram-negative
bacteria, has been associated with morphological alter-
ations from ramified (rest or M0 phenotype) to amoe-
boid (activated or M1) phenotype of microglia which
have long been associated with neuroinflammation
(Timmerman et al., 2018).

LPS, first identified as a Toll-like receptor 4 (TLR-4)
ligand (Beutler, 2000; Yang et al., 2018), enables micro-
glia in the CNS to be activated by expressing TLR-4 and
eventually produce neuroinflammatory cytokines that
mediate neuronal cell death (Lysakova-Devine et al.,
2010). It mainly initiates the production of pro-
inflammatory cytokines such as tumor necrosis factor
(TNF)-α, interleukin (IL)-1β, IL-6, and ROS in both glial
cells and neurons (Boche et al., 2013; Sica &
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Mantovani, 2012). Administration of LPS to animals is
thought to cause behaviors very similar to clinically rele-
vant symptoms of ND in humans (Choi et al., 2012).
Additionally, LPS is also known to cause withdrawal of
neurites and loss of neuron viability particularly in the
CNS cells, and stimulation of nitric oxide (NO) produc-
tion which contributes to neurotoxicity (Hoozemans
et al., 2002; Shi et al., 2010).

Vasoactive intestinal peptide (VIP), a 28-amino acid
neuropeptide/neurotransmitter is an essential endoge-
nous peptide molecule involved in many physiological
processes. It recently appears to be a molecule that has
the potential to exert beneficial effects against ND, such
as Parkinson’s disease (PD) (Delgado & Ganea, 2013).
VIP is identified in the central and peripheral nervous
systems, and also recognized as a widely distributed neu-
ropeptide in nerve terminal and intra-organ ganglia
(Said & Rosenberg, 1976). VIP is known to influence both
innate and adaptive immune responses, and acts as an
important anti-inflammatory mediator in animal models
of inflammatory/autoimmune diseases, suggesting that
VIP/VIP receptor system could serve as a target for novel
therapeutic strategies in immune disorders. VIP also
enhances glycogen metabolism in the cerebral cortex and
promotes neuronal survival (Brenneman et al., 1990;
Sorg & Magistretti, 1992). Its neuroprotective effect can
be direct through receptors or indirect by promoting
release of neurotrophic factors from microglial cells.

Owing to the mediatory effect of the specific type
1 VIP receptor (VPAC1), VIP and its structurally related
peptide pituitary adenylyl cyclase-activating polypeptide
(PACAP) have been shown to inhibit pro-inflammatory
cytokines TNF-alpha, IL-1beta, IL-6, and NO production
from LPS-activated microglia by inhibiting p65 nuclear
translocation and nuclear factor-kappaB (NFkB)-DNA
binding (Delgado et al., 2003). It has also been reported
that VIP and PACAP inhibit the production of TNF-alpha
from activated microglia by a cyclic adenosine
monophosphate-dependent pathway (Kim et al., 2000).
Moreover, VIP has been shown to reduce the monocyte-
induced neutrophil chemotaxis, presumably through the
inhibition of IL-8 production (Delgado & Ganea, 2003a).
Furthermore, Gonzalez-Rey et al. have reported the
inhibitory effect of VIP on cyclooxygenase expression and
subsequent production of Prostaglandin E2 by activated
macrophages, dendritic cells, and microglia, being medi-
ated through VPAC1 (Gonzalez-Rey & Delgado, 2008).
VIP and PACAP have also been shown to inhibit the
expression of the microglia-derived CXC (MIP-2 and KC)
or CC (such as MIP-1alpha, �1beta) chemokines and
NFkB binding mediated through VPAC1. The inhibition
of chemokine production by VIP/PACAP leads to a sig-
nificant reduction in the chemotactic activity generated

by activated microglia for peripheral leukocytes, which in
turn contributes to the control of inflammation in the
CNS (Delgado et al., 2002). These findings indicate that
VIP and/or PACAP released by neurons promote neuro-
nal survival via limiting the inflammatory process
(Delgado et al., 2002; Ganea & Delgado, 2002).

Moreover, VIP and PACAP have been shown to
control the gene expression of interferon-gamma
(IFN-γ)-inducible protein-10, CD40, and iNOS, three
microglia-derived mediators, through their effect on IFN-
gamma-induced Jak/STAT1 pathway, that play an essen-
tial role in several pathological conditions, including
inflammatory and autoimmune disorders (Delgado,
2003). In addition, Broome et al. have reported that co-
treatment of rotenone with PACAP or VIP prevents
rotenone-induced increase of NO, CD11b, Matrix metal-
loproteinase (MMP)-9 and IL-6 in BV2 microglia cells,
supporting the protective effects of these peptides against
inflammation (Broome et al., 2022). Recent reports also
show that VIP suppresses the inflammatory response of
microglia in in vivo models of neurodegeneration. PD is
characterized by the selective degeneration of dopaminer-
gic neurons in substansia nigra pars compacta (SNpc).
Dopaminergic cells are therefore an obvious candidate
for cell-based therapies for PD (Skidmore & Barker,
2023). In an MPTP model of PD, VIP treatment signifi-
cantly decreased MPTP-induced dopaminergic neuronal
loss in SNpc and nigrostriatal nerve-fiber loss. VIP has
also been reported to prevent MPTP-induced activation
of microglia in SNpc and striatum and the expression of
the cytotoxic mediators, iNOS, interleukin 1beta, and
TNF-alpha (Delgado & Ganea, 2003b).

On the other hand, VIP has also been shown to
inhibit the neurodegeneration induced by β-amyloid, a
characteristic feature of Alzheimer’s disease (AD), by
indirectly inhibiting the production of some inflamma-
tory and neurotoxic agents by activated microglia cells
via blocking signaling through the p38 MAPK, p42/p44
MAPK, and NFkB cascades (Delgado et al., 2008). In an
in vivo model of spared nerve injury, mice deficient in
VIP have been investigated in terms of immune respon-
siveness to the nerve lesion. VIP-deficient mice had a
stronger early pro-inflammatory cytokine response and
a more augmented microglial reactivity compared with
wild-type controls, suggesting a role of VIP in neuro-
pathic states (Gallo et al., 2017).

Finally, VIP mediates biological responses by activat-
ing two related receptors, VIPR1 and VIPR2, and the use
of native VIP cannot distinguish between these two
receptors. Besides VIP’s rapid metabolism, there is a chal-
lenge in VIP therapy related to receptor specificity, since
activation of both receptors may cause secondary toxic-
ities. This led to the development of metabolically stable
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and receptor-selective agonists that provide better
pharmacokinetic and pharmacodynamic therapeutic end
points. Olson et al. have investigated the protective effects
of selective agonists against MPTP-induced mice PD
model. Treatment with VIPR2 agonist caused increased
neuronal sparing, reduced microglial responses, and
diminished release of proinflammatory cytokines, such as
IL-17A, IL-6, and IFN-γ (Olson et al., 2015).

Despite such beneficial effects of VIP, the duration of
VIP action may be limited by its short biological half-life
because of dipeptidyl peptidase-4 (DPP-4) mediated deg-
radation. Its short plasma half-life after intravenous
administration and the difficulty in administration routes
limit its clinical application. This led to the development
of long-acting VIP analogues, in combination with appro-
priate drug delivery systems (Onoue et al., 2007). As a
strategy to increase the short half-life of the cognate VIP
molecule, VIP analogues, either shorter or nonpeptide
are used, however, they show limited advantages, while
the application of protease inhibitors could lead to unde-
sired side effects (Klippstein & Pozo, 2015). Moreover,
the transportation of peptide and protein therapeutics
from blood to brain are generally prevented by blood–
brain barrier (BBB). In this context, chimeric peptides are
formed by coupling a non-transportable peptide thera-
peutic to a BBB drug transport vector (Bickel et al., 2001).
In ND, the efficacy of pharmacological treatments
reduces as the neurodegenerative process progresses.
Significant side effects may occur, because high dosage of
medication is required, since BBB significantly prevents
systemic agents from reaching therapeutic parenchymal
levels. Intracerebral drug delivery, specifically gene
therapy, is a promising strategy for overcoming these
challenges in medical therapy.

Gene therapy may allow correction of the underlying
pathogenic mechanism, or may exert neuroprotective/
restorative effects, by altering or inducing the expression
of specific proteins (Sun & Roy, 2021). Modified viral
vectors are used to deliver genes of interest to the brain.
Vectors derived from adeno-associated viruses (AAVs)
are the most widely used ones in clinical trials for CNS
disorders. On the other hand, Lentiviral vectors have a
great advantage, since they can carry a larger DNA pay-
load than AAV vectors. A Phase 1/2 open-label clinical
trial of gene therapy in PD has been reported. In this
trial, researchers achieved to produce a continuous and
stable production of dopamine in the motor region of
the putamen, by using ‘ProSavin’, a lentiviral vector
that encodes dopamine biosynthetic enzymes (Palfi
et al., 2014). Furthermore, two promising gene therapy
candidates of neurotrophic/regenerative factors that sup-
port the survival of dopaminergic midbrain neurons are
glial cell line-derived neurotrophic factor (GDNF) and

neurturin (NRTN) (Collier & Sortwell, 1999). In this
context, Phase 1 clinical trials are ongoing to determine
the safety of bilateral AAV2-GDNF injections into the
putamen, whereas Phase 1 clinical trial delivering
AAV2-NRTN to the putamen have been reported to be
well-tolerated, but not to have succeeded an improve-
ment in motor functions (Marks et al., 2010).

In the light of these data, gene therapy vectors with a
capability of VIP expression could serve as a continuous
VIP source to obtain neuroprotective/restorative effects.
Lentiviral vectors may provide long-term gene expression
that is suitable for treating diseases, especially of complex
genetic disorders (Tasyurek et al., 2018). In a recent Type
1 Diabetes mellitus model of mice, LentiVIP provided
suppression of diabetes-induced inflammation that
resulted in the protection of pancreatic beta cells from
apoptosis, in addition to restored beta-cell proliferation
(Erendor et al., 2020).

The aforementioned data indicates the potential for
lentiviral gene therapy vectors encoding VIP (LentiVIP) as
a novel gene therapy agent, to treat ND owing to its anti-
inflammatory, anti-apoptotic and neuroprotective proper-
ties. Collectively, these advantages have led us to test the
protective properties of LentiVIP gene delivery against
microglial toxicity and toxin-mediated neurodegeneration
on an in vitro neurodegenerative model. In this context,
we constructed a neurodegenerative model by treating
neuron-like human differentiated (d)-SH-SY5Y cells with
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
which is frequently used to build ‘in vivo’ and ‘in vitro’
PD models (Chen et al., 2018; Goksu Erol et al., 2022).
This toxin is metabolized into the toxic cation 1-methyl-
4-phenylpyridinium (MPP+) by the enzyme, monoamine
oxidase B (MAO-B) (Frim et al., 1994). Dopaminergic neu-
rons are selectively vulnerable to the effects of MPP+,
because their dopamine reuptake is mediated by dopa-
mine transporter (DAT) that displays high affinity for
MPP+. As SH-SY5Y neuroblastoma cells become differen-
tiated, they acquire the ability to transport dopamine
(Willets et al., 1993) and norepinephrine (Murphy
et al., 1991), which make them capable of metabolizing
MPTP into MPP + via MAO-B (Song et al., 1996, 1997).
The versatility of SH-SY5Y cells in recapitulating key
aspects of neuronal physiology and their susceptibility to
neurotoxic insults make them a valuable tool for elucidat-
ing disease mechanisms, evaluating potential therapeutic
interventions, and screening drug candidates.

In the light of all this information, this study aimed to
evaluate the protective effects of the secretome that is
derived from microglia transfected with LentiVIP against
toxin-induced neurodegeneration using a cellular model.
Synthetic VIP treated microglial secretome was also
evaluated in terms of neuroprotection.

1996 GOKSU ET AL.
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2 | MATERIALS AND METHODS

2.1 | Reagents and chemicals

SynVIP (V3628-Sigma) was dissolved in acetic acid (AA,
64–19-7-EMSURE, Merck, Germany) as a 100 mM stock
solution, then serial dilution of test solutions was per-
formed. Since the doses higher than 10�6 M did not show
the desired effect of VIP on cells in our preliminary
experiments, and the recommended dose is between the
range of 10�8–10�6 M, we applied SynVIP in cell culture
at 10�7 and 10�8 M (Delgado & Ganea, 2003a; Festoff
et al., 1996; Nicol et al., 2004). In addition, its vehicle, AA
was also tested at the doses required for dissolving 10�7

and 10�8 M VIP.
Lipopolysaccharide (LPS, L2654-Sigma Aldrich,

St. Louis, MO) was used to activate microglia cells. An
effective concentration of ‘5 μg/ml’ was selected based on
previous studies (Kang, 2014; Kocanci et al., 2024; Xu
et al., 2022).

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP,
M0896-Sigma Aldrich), a neurotoxin that triggers oxida-
tive stress and apoptosis in neurons, was applied on dif-
ferentiated (d)-SH-SY5Y cells to induce cell degeneration
(Chen et al., 2018; Frim et al., 1994; Murphy et al., 1991;
Song et al., 1996, 1997; Willets et al., 1993). 10 mg MPTP
was dissolved in 1 ml of double distilled water. The solu-
tion was filter-sterilized and stored in dark at �20�C.
Concentration titration assay of MPTP, including four
different concentrations, as 100, 500, 1000, and 1500 μM,
for cell viability was performed, as described in our previ-
ous study (Goksu Erol et al., 2022).

2.2 | Production and purification of HIV-
based lentivirus encoding VIP and their
functionality analysis

Lentivirus vectors were produced by mixing the transfer
vectors of pLentiVIP (Transfer plasmid carrying CMV-
driven VIP encoding sequence) or pLentiLacZ with
three packaging plasmids [gag/pol, rev and VSV-G] as
described by Tasyurek et al. (Tasyurek et al., 2018).
Concentrated viral samples were then purified by AEX
chromatography, as described by Olgun et al. (Olgun
et al., 2019). The titer of lentiviral vector stocks was
determined by qPCR method, and the functionality
analysis of constructed lentiviral vectors (both LentiVIP
and LentiLacZ as control vector) was performed by
Glucose-Stimulated Insulin Secretion method as
described our previous study (Erendor et al.) (Erendor
et al., 2020).

2.3 | Confirmation of the in vitro
expression of LentiVIP

Before investigating the in vitro therapeutic efficacy of
the LentiVIP gene therapy on neurodegenerative model,
first the expression of VIP from the newly generated vec-
tor LentiVIP was verified in human HepG2 hepatocellu-
lar carcinoma cell line - as control that does not expresses
VIP. HepG2 cells were transduced with LentiVIP or
LentiLacZ. 24 hours later, the supernatant was refreshed
to remove polybrene which was regarded as ‘zero point’.
24 h and 72 h later than the ‘zero point’, cell groups were
morphologically assessed, then their supernatants
were removed for analysis, and immunostaining was per-
formed. To quantitate the amount of VIP found in cell
culture supernatants, Enzyme Immune Assay (EIA) for
VIP was performed according to the manufacturer’s
instructions (Peninsula Laboratories, LLC, Bachem;
S-1183, San Carlos, CA). Immunocytochemical analysis
was also performed using anti-VIP antibody (Abcam,
ab8556) to confirm VIP expression in HepG2 (Erendor
et al., 2020). Also, the level of VIP secretion in microglial
cells transduced with LentiVIP/LentiLacZ or treated with
SynVIP/or its vehicle, AA, depending on the dose and
time points, was determined with Enzyme Immune
Assay.

2.4 | Cell culture

2.4.1 | HepG2 cell line

HepG2 hepatocellular carcinoma cell line was obtained
from ATCC (HepG2, HB 8065™). Cells were cultured in
High Glucose Dulbecco’s Minimum Essential Media
(DMEM) supplemented with 10% (v/v) fetal bovine serum
(FBS) (04–007-1A-Biological Industries, Beit Haemek,
IL), 1% non-essential amino acids (11140–050-Gibco,
Waltham, MA), and 1% (v/v) antibiotic-antimycotic
(L0010–020-Biowest, Nuaille, FR), and maintained in a
humidified atmosphere, 5% CO2 at 37�C. Cells were
plated out as 1.0 � 105 cell/cm2 in 24-well plates.

2.4.2 | HMC3 and human SH-SY5Y
neuroblastoma cell lines

The SV-40 immortalized human microglia cell line
HMC3 were purchased from ATCC (CRL-3304,
Manassas, VA). Cells were cultured in Eagle’s Minimum
Essential Media (EMEM) (11,095–080-Thermo Fisher
Scientific, Waltham, MA), supplemented with 10% (v/v)

GOKSU ET AL. 1997
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fetal bovine serum (FBS) (04–007-1A-Biological Indus-
tries, Beit Haemek, IL), 1% non-essential amino acids
(11,140–050-Gibco, Waltham, MA), and 1% (v/v)
antibiotic-antimycotic (L0010–020-Biowest, Nuaille, FR),
and maintained in a humidified atmosphere, 5% CO2

at 37�C.
The human neuroblastoma SH-SY5Y cell line (ATCC,

Rockville, MD, USA) was obtained from SAP Institute
(Ankara, Turkey). These cells have been used as a
cell model for studying multiple pathways linked to
PD pathology and novel treatment options (Song
et al., 1997). The cells were cultured in a 1:1 mixture of
DMEM/F12 (Gibco) supplemented with 10% (v/v) Fetal
Bovine Serum (FBS) (10,500,064-Gibco). In addition, 1%
(v/v) penicillin/streptomycin (15,140,122-Sigma Aldrich)
and 1% (v/v) L-glutamine (25,030,024-Sigma Aldrich),
and 40% MCDB-201 (M6770-Sigma Aldrich) were also
added to the culture media. The media were changed
every other day.

For neuronal differentiation, cells were seeded in ster-
ile 96 or 6-well plates (1.0 � 105 cell/cm2) and treated
with 10 μM Retinoic acid (RA) (R2625-Sigma) once every
other day in DMEM/F12 with 2% FBS for 6 days. Treated
with 10 μM RA (R2625-Sigma) once every other day in
DMEM/F12 with 2% (v/v) FBS for 6 days. The differenti-
ated (d)-SH-SY5Y cells with acquired neuronal properties
were further used in our experiments involving MPTP
application and microglial CM treatments (Yamchuen
et al., 2017).

2.4.3 | Experimental design

HMC3 microglial cells were plated out as 1.0 � 105

cell/cm2 in 96, 24, or 6-well plates. Microglia cells were
treated with LPS (5 μg/ml). Then SynVIP or LentiVIP
treatments were performed. SynVIP group cells were
treated with 10�7 and 10�8 M VIP/AA. LentiVIP group
cells were transduced with 5, 25 and 125 MOI Lenti-
VIP/25 or 125 MOI LentiLacZ together with polybrene
(6 μg/ml). The control group was treated with no virus
but polybrene. 24 hours after transduction, the cell media
was refreshed with a whole culture medium to remove
the polybrene (This timepoint was regarded as ‘zero
point’). All cell groups were incubated for an additional
72 hours, then cell viability was determined with MTT
assay in microglia culture groups (in 96 well plates),
whereas MG CMs (in 6 well plates) were collected. CMs
were stored at �80�C for later application to (d)-SH-
SY5Y cells or subjected to analysis for TGF-β1 and NO
levels, besides TOC/TAC. Additionally, IF staining with
Anti-CD11b antibody was performed on these cellular
groups.

(d)-SH-SY5Y cells were treated with microglial CM
groups of SynVIP or LentiVIP in the presence or absence
of MPTP. 24 hours following the MG CM treatments,
groups in 96-well plates were undergone cell viability
analyses. All supernatants in the 6 or 24-well plates were
collected and stored at �80�C for subsequent analysis of
TOC, TAC, NO, and TGF-β1 levels; IF staining and apo-
ptotic nuclear assessment after Hoechst staining were
also performed. (The major applications and their time-
points were visualized in graphical abstract.).

2.4.4 | Cell viability assay

Microglia and (d)-SH-SY5Y cell groups were cultured in
96-well plates at a density of 1.0 � 104 cell/well. The cell
viability rates in 1- Microglial cell groups (that were
treated with LPS and Lenti/SynVIP), 2- with or without
MPTP (d)-SH-SY5Y cell groups (that were treated with
various concentrations of MG CM) were investigated
using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazo-
lium (MTT) assay. MTT, a membrane-permeable dye
solution, was added to the wells at a concentration of
1 mg/ml, and the mixture was incubated at 37�C for
about 4 h. After the supernatant was removed, the pellets
were dissolved in 200 μl/well of DMSO. The blue crystals
were solubilized, and the colorimetric intensity was mea-
sured at 570 nm and 690 nm on a microplate reader
(Thermo Scientific Multiskan Spectrum). The percentage
of cell viability was calculated relative to the colorimetric
intensity of control cells (Zhang et al., 2020). MTT is used
to assess cell viability and proliferation. Besides evaluat-
ing the cell viability rates, the MTT assay is a measure of
the metabolic activity of the cells analysed; namely, the
more metabolic activity in the sample, the higher will be
the signal obtained.

2.4.5 | Immunofluorescence (IF) staining of
microglia and (d)-SH-SY5Y cells

Groups of microglial cells in six-well plates were
employed to assess alterations in the expression intensity
of the following treatments with LPS/SynVIP/LentiVIP.
To observe alterations in the microglial activation caused
by LPS/SynVIP/LentiVIP treatments, HMC3 microglial
cells were plated in 6 well plates (1.0 � 105 cell/cm2) and
groups were formed.

On the other side, to observe the MPTP-related
changes in (d)-SH-SY5Y cells, SH-SY5Y cells were plated
in 6 well plates (1.0 � 105 cell/cm2), and differentiated
with RA treatment for 6 days, and with or without MPTP
groups were formed.

1998 GOKSU ET AL.

 14609568, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.16273 by A

kdeniz U
niversity, W

iley O
nline L

ibrary on [24/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



At the end of the treatments, cells were fixed with
paraformaldehyde for 20 min, and blocked with phos-
phate buffered saline (PBS) containing 0.1% Tween-20
(v/v) and 5% bovine serum albumin for 1 h at room
temperature. Microglia were immunostained with anti-
CD-11b antibody (nb11089474 pAB-Novus, Boston, MA
antibody (1:400) (Jurga et al., 2020), whereas (d)-SH-
SY5Y cells were immunostained with anti-PGP9.5
antibody (1:600) (ab8189-Abcam). Following incubation
at 4�C overnight, all cell groups were incubated with
secondary antibodies (HMC3: 35552-Goat Anti-Rabbit
IgG, DyLight 488, Thermo Scientific) (1:400), ((d)-SH-
SY5Y: A10037-Alexa Fluor 568 donkey anti-mouse IgG
(H + L)- Invitrogen) (1:400)), and then stained with
DAPI at room temperature.

Expression of CD-11b, a marker indicative of micro-
glial activation, and PGP9.5, a neuron specific protein,
were evaluated as fluorescent staining intensity in the
cytoplasm of microglia and (d)-SH-SY5Y cells, respec-
tively, using a Leica DMi8 Microscope. Photographs were
taken using LasX Software (Fan et al., 2018). The fluores-
cence intensity of CD-11b, PGP9.5, and DAPI expression
was assessed utilizing NIH ImageJ, as outlined in a previ-
ous study (Varghese et al., 2014).

2.4.6 | Nuclear DNA staining with
Hoechst 33342

SH-SY5Y cells were seeded into 6 well plates at a density
of 1.0 � 105 cell/cm2. After seeding, cells were differenti-
ated with RA treatment for 6 days and grouped as
(a) Non-activated MG CM treated (Control), (b) Activated
MG CM treated, (c) SynVIP treated activated MG CM
treated, and (d) LentiVIP transfected activated MG CM
treated groups. The cells were stained with 15 μg/ml of
Hoechst 33342 staining (H-3570 for 10 min in the dark,
washed with PBS, and immediately visualized to observe
morphological changes using Leica DMi8 Fluorescence
Microscope (�10 and �20 objective).

2.4.7 | Measurement of Total oxidant and
Total antioxidant capacities

TOC and TAC levels of the samples were measured as
previously described (Malik et al., 2018; Yaribeygi
et al., 2019). TOC analysis is a colorimetric method based
on the oxidation of ferrous iron (Fe+2) to the ferric iron
complex (Fe+3). In an acidic medium, ferric iron forms a
colored compound. The intensity of this colored com-
pound was then measured at 600 nm by a spectropho-
tometer. H2O2 was used for the calibration and the result

was given as μmol H2O2 Equiv./L. The expected
coefficient of variation of the method is <5%. TAC was
determined by the antioxidant-induced color change
in 2,20-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS) measured at 660 nm using a spectrophotometer.
Vitamin E was used for the calibration and the result was
expressed as μmol H2O2 Equiv./L. The expected coeffi-
cient of variation of the method is <3%.

2.4.8 | Transforming growth factor-β1 (TGF-
β1) enzyme-linked immunosorbent assay

After cell-free culture supernatants of microglia and
(d)-SH-SY5Y cells were collected, they were assayed for
anti-inflammatory cytokine TGF-β1 with Enzyme-Linked
Immunosorbent Assay (ELISA) using Human/Mouse
TGF-β1 ELISA kit (88–8350-eBioscience).

2.4.9 | Nitrate/nitrite colorimetric assay

After cell-free culture supernatants of (d)-SH-SY5Y cells
were collected, they were assayed for NO levels with
Nitrate/Nitrite Colorimetric Assay Kit (78,001-Cayman,
MI) according to the manufacturer’s instructions. Nitrate
and nitrite in culture supernatants were converted to NO.

3 | STATISTICAL ANALYSIS

All data were presented as the mean ± S.E.M. of four
independent experiments in which triplicate samples
were performed. Statistical differences between the con-
trol group and agent treated groups were determined by
unpaired two-tailed Student’s t-test, ANOVA (paramet-
ric) or Mann–Whitney U (non-parametric). Multiple
group comparisons were performed using oneway analy-
sis of variance (ANOVA) followed by posthoc Tukey’s
HSD test for pairwise comparisons between the groups.
Kruskal–Wallis was used to compare non-parametric
data. The statistical analysis of data was performed using
GraphPad Prism version 9.3.1 for Windows (San Diego,
CA, USA).

4 | RESULTS

4.1 | Verification of in vitro expression
of LentiVIP vector

VIP levels in culture supernatants of SynVIP treated
microglia at 24 h and 72 h after ‘zero point’ indicated

GOKSU ET AL. 1999
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that high VIP levels persisted in the supernatants until
72 h of culture after ‘zero point’, with a slightly decreas-
ing pattern. The highest level of VIP was detected in
microglial cells treated with 10�7 M SynVIP at 24 h after
‘zero point’ (Figure 1a).

HepG2 cells that do not express VIP were transduced
with LentiVIP or LentiLacZ (control vector) to confirm

VIP expression from LentiVIP. VIP levels increased in
dose and time-dependent manner in LentiVIP infected
cell CM, and the amount of VIP in the LentiLacZ-
infected cells did not show any significant difference
compared with uninfected cells (Figure 1b).

Moreover, VIP levels in culture supernatants of Lenti-
VIP infected microglia displayed higher levels of this

F I GURE 1 (a–c). In vitro

expression of the LentiVIP vector. The

levels of VIP were measured at 24 and

72 hours after ‘zero point’ in the CM of

microglial cells treated with SynVIP

(10�8 and 10�7 M) (a), HepG2 cells

infected with LentiVIP (5, 25, 125 MOI)

or LentiLacZ (b), and microglial cells

infected with LentiVIP (5, 25, 125 MOI)

or LentiLacZ (c). The presented data

represent the mean ± S.E.M. from four

independent experiments, each

consisting of triplicate samples, expressed

as a percentage relative to the control

(*p < 0.05 compared with untreated cells

as control, 24 h; #p < 0.05 compared with

untreated cells as control, 72 h). The

LentiLacZ vector was utilized at an MOI

of 125 (for zero point, see Graphical

abstract).

F I GURE 2 (a and b). The effect of

SynVIP treatment at concentrations of

10�8 and 10�7 M (a) and LentiVIP

transduction at 5, 25, and 125 MOI (b), on

microglial cell viability rates. The

presented data represent the mean ±

S.E.M. from four independent

experiments, each with triplicate samples,

expressed as a percentage relative to the

control (*p < 0.05 compared with

untreated cells as the control; **p < 0.05

compared among treatment groups). The

LentiLacZ vector was utilized at an MOI of

25 and 125 (for detailed timepoints of

applications, see Section ‘2.3.3.
Experimental Design’ and ‘Graphical
abstract’).

2000 GOKSU ET AL.
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peptide in a time and dose-dependent manner with
LentiVIP concentration used for transduction. The
amount of VIP in the LentiLacZ infected cells was indis-
tinguishable from uninfected cells. The highest VIP level
was detected at the 72 h after ‘zero point in the CM of
25 MOI LentiVIP infected microglia (Figure 1c).

4.2 | Effects of SyntheticVIP and
LentiVIP on cell viability of microglia

As illustrated in Figure 2a, application of SynVIP on
LPS-treated (activated) microglial cells resulted in a
statistically significant increase in cell viability rates.
Specifically, both doses (10�8 and 10�7 M) exhibited a
substantial cell-proliferative effect, with viability rates
reaching 1.31 and 1.38 times that of the control, respec-
tively (for both, p < 0.05). Furthermore, the solvent for
VIP, AA did not cause any significant effect on cell viabil-
ity rates (p > 0.05) (data not shown in the figure).

As depicted in Figure 2b, LentiVIP-infected microglia
exhibited a significant increase in cell viability rates at
concentrations of 5 and 25 MOI (for both, p < 0.05).
However, microglia infected with 125 MOI of LentiVIP
and LentiLacZ displayed a notable decrease in viability
rates (p < 0.05 for both), indicating a cytotoxic effect at
this high concentration. Additionally, the viability rate of
LentiLacZ-infected microglia cells at 25 MOI was indis-
tinguishable from that of uninfected cells (p > 0.05).

Since 25 MOI concentration of LentiVIP and Lenti-
LacZ did not show any cytotoxic effect, we applied 5 and
25 MOI of LentiVIP in subsequent experiments.

4.3 | SynVIP treated/LentiVIP infected
microglial CM is less detrimental to (d)-
SH-SY5Y cells

To determine the concentrations that induce 30–40% of
degeneration in (d)-SH-SY5Y cell groups, we exposed the
cells to five different concentrations of MPTP (100, 250,
500, 1000, 2000 μM) for a 24-hour period. It was observed
that an increase in the MPTP dose resulted in a propor-
tional reduction in cell viability (ranging from 5% to 75%
cell death). Among these various concentrations, 1000 μM
was selected as it yielded an approximate survival rate of
65–70% in (d)-SH-SY5Y cells (Data not shown). This con-
centration was subsequently employed in our experimental
applications to establish our in vitro neurodegenerative
models (Goksu Erol et al., 2022).

When different concentrations of activated microglial
conditioned media (½, 1/4, 1/8) were applied to (d)-
SHSY5Y cells, a negative correlation between cell viabil-
ity rates and the increasing concentrations of CM were
observed (5 ± 2, 75 ± 4, 35 ± 5% of cell viability rates,
respectively). ‘1/4’ ratio of microglial conditioned media
to (d)-SH-SY5Y cell culture medium was found to be
appropriate for subsequent experiments (Data not
shown).

As shown in Figure 3a, CM of LPS-activated microglia
led to a significant decrease in the viability of without or
with MPTP-(d)-SH-SY5Y cells (50 ± 5% and 75 ± 6%,
respectively) (p < 0.05). CM from activated microglia
treated with both 10�8 and 10�7 M SynVIP provided sig-
nificantly increased survival rates of with or without
MPTP- (d)-SH-SY5Y cells compared with non-treated

F I GURE 3 (a and b). Effects of various microglial conditioned media (MG CM) groups (a – SynVIP or AA [employed as the vehicle for

10�7 M SynVIP] treated, b – LentiVIP/LentiLacZ transduced MG CM) on with or without MPTP-(d)-SH-SY5Y cell viability for 24 h.

(Activated MG CM = 5 μg/ml LPS treated MG CM). (The presented data represent the mean ± S.E.M. from four independent experiments,

each conducted with triplicate samples, and are expressed as a percentage relative to the control (*p < 0.05 compared with untreated cells as

control, #p < 0.05 compared with only MPTP treated CM group, ##p < 0.05 compared among MG CM groups). (For detailed timepoints of

applications, see Section ‘2.3.3. Experimental design’ and ‘Graphical abstract’).

GOKSU ET AL. 2001

 14609568, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.16273 by A

kdeniz U
niversity, W

iley O
nline L

ibrary on [24/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



F I GURE 4 Legend on next page.

2002 GOKSU ET AL.
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ones (p < 0.05). In contrast, the application of AA, the
SynVIP vehicle, did not exert a proliferative effect on
(d)-SH-SY5Y cell viability compared with the control,
indicating that the vehicle alone did not induce any sig-
nificant changes in cell viability. 10�7 M SynVIP group
showed significantly better cell viability rates, thus we
used 10�7 M SynVIP application in subsequent
experiments.

As shown in Figure 3b, when CM of activated micro-
glia that were transduced with LentiVIP were applied to
(d)-SH-SY5Y cells, it was observed that both 5 and
25 MOI LentiVIP-infected microglia CM were associated
with a significant increase in viability rates compared
with non-infected activated microglia CM (p < 0.05).
25 MOI LentiVIP-infected microglial CM caused better
viability rates significantly better cell viability rates, thus
we used 25 MOI LentiVIP application in subsequent
experiments (p < 0.05).

In addressing the concern regarding the potential
presence of residual VIP in synthetic VIP-treated condi-
tioned medium, we conducted an investigation by asses-
sing the impact of VIP alone on (d)-SH-SY5Y cell
viability. VIP was applied at concentrations of 3 � 10�10

and 7 � 10�10 M, chosen to be equivalent to the levels of
VIP detected in the microglial conditioned medium
(MG CM) -24-hour after zero point- following the appli-
cation of 10�8 and 10�7 M SynVIP, respectively, as
depicted in Figure 1a). Both concentrations of SynVIP
showed insignificant changes in viability rates of (d)-SH-
SY5Y cells.

4.4 | IF images of microglia cells

As depicted in Figure 4, the assessment of fluorescent
images of microglia, stained with the microglial activa-
tion marker, CD11b, revealed distinct patterns. In the
control group, which was not exposed to LPS, a moderate
number of microglial cells, a few ameboid microglia cells
scattered throughout all areas, and low-intensity CD-11b
staining were observed. In the group treated with
5 μg/ml LPS, an increased number of microglial cells,
intensified CD-11b staining, and an elevated presence of
ameboeid microglia cells were evident. In contrast, the
VIP-treated groups (both SynVIP and LentiVIP) exhibited

a reduction in CD-11b expression and a decreased num-
ber of ameboeid microglia cells, as further illustrated in
Figure 4a. As seen in the quantitative analysis of the
fluorescence ratio of CD-11b/DAPI (Figure 4b), VIP
treatments (both SynVIP and LentiVIP) diminished the
LPS-derived elevation of the aforementioned ratio.
Collectively, these results indicate that VIP attenuates
microglial activation.

4.5 | IF images of (d)-SH-SY5Y cells

As seen in Figure 5, PGP9.5 activation was found to be
significantly decreased in MPTP-treated (d)-SH- SY5Y
cells when compared with non-treated control, supported
by the results of quantitative analysis of the fluorescence
ratio of PGP9.5/DAPI, which revealed the values of for
the control group (0.83 ± 0.03), significantly higher than
that of MPTP-treated group (0.40 ± 0.30) (p < 0.05).

4.6 | Apoptotic nuclear assessment of
(d)-SH-SY5Y cells

Apoptotic nuclear morphology was examined using
Hoechst 33342 staining. Activated MG CM treatment
on (d)-SH-SY5Y cells expectedly caused a significant
increase in apoptotic cell number when compared with
non-activated MG CM treated ones. On the other hand,
the groups of ‘SynVIP/LentiVIP treated activated MG
CM showed significantly reduced number of apoptotic
cells, when compared with ‘activated MG CM’ treated
group (Figure 6 a-e).

4.7 | SynVIP treated/LentiVIP infected
microglia display higher levels of TGF-β1 in
their conditioned media

The level of TGF-β1 showed a significant reduction in
CM of LPS (5 μg/ml) treated microglial group (239
± 46 pg/ml) compared with the control group (414
± 23 pg/ml) (p < 0.05). Conversely, a substantial increase
in TGF-β1 levels was observed in SynVIP (10�7 M) trea-
ted group (537 ± 33 pg/ml) compared with control

F I GURE 4 (a and b). Photomicrograph of microglia cells (phase/immunostained with CD11b antibody [a microglial activation

marker]/DAPI and their merge), and 3D surface plot illustrating intensity (arbitrary units) (a), and quantitative analysis of the fluorescence

ratio of CD-11b/DAPI, (b) of microglia cells that were treated with LPS: 5 μg/ml, SynVIP: 10�7 M or Lenti VIP: 25 MOI. Observation was

made under a fluorescent microscope at �20 objective [scale Bar = 100 μm]. (Amoeboid microglia are indicated by arrows). The quantitative

analysis of fluorescence ratio of CD-11b/DAPI was conducted on a sample size of n = 5. The intensity range was set from 0 to 255, where

0 corresponds to the darkest shade, and 255 represents the lightest shade.

GOKSU ET AL. 2003
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(p < 0.05). Moreover, TGF-β1 levels were higher in LPS
+ SynVIP (10�7 M) treated group, (495 ± 41 pg/ml) com-
pared with only LPS group (239 ± 46 pg/ml) (p < 0.05)
(Figure 7a).

Compared with control (385 ± 23 pg/ml), a signifi-
cant increase in TGF-β1 levels was observed in the 5 and
25 MOI LentiVIP transduced MG CM (546 ± 21 and
563 ± 34 pg/ml, respectively) (p < 0.05 for both)
(Figure 7b).

4.8 | High TGF-β1 level and total
antioxidant capacity and low levels of
nitric oxide and total oxidant capacity in
CM of (d)-SH-SY5Y cells treated with
LentiVIP infected microglial CM

The CM from LPS-treated microglia led to a significant
decrease in TGF-β1 levels within the CM of (d)-SH-SY5Y
cells, compared with control (p < 0.05). The levels of this
anti-inflammatory cytokine were notably higher in (d)-

SH-SY5Y cell groups treated with ‘5 and 25 MOI
LentiVIP-infected’ activated MG CMs (396 ± 21,
413 ± 34 pg/ml, respectively) compared with the group
treated with LPS alone (146 ± 21) (significant for both,
p < 0.05) (Figure 8a).

Activated MG CM caused an increase in NO levels
(p < 0.05). When compared with the group treated with
LPS alone, the presence of 25 MOI LentiVIP-infected
microglia CM led to significantly lower NO levels in (d)-
SH-SY5Y cell CM (p < 0.05) (Figure 8b). Furthermore,
activated MG CM resulted in increased TOC levels
(Figure 8c) and decreased TAC levels compared with the
control group (Figure 8d) (significant for both p < 0.05).
However, these levels were reversed in the CM of (d)-SH-
SY5Y cells that were exposed to LentiVIP-MG CM.

5 | DISCUSSION

Both neuro-inflammation and oxidative stress play
important roles in PD (Graeber et al., 2011; Kraft &

F I GURE 5 Photomicrograph of control and MPTP treated (d)-SH-SY5Y cells immunostained with anti-PGP9.5 antibody (a neuronal

marker), and 3D surface plot illustrating intensity (arbitrary units) of these cells. SH-SY5Y cells that were differentiated within 6 days of RA

treatment were treated with 1000 μM MPTP for 24 h. observation was made under a fluorescent microscope at �20 objective. [scale

Bar = 100 μm]. The cytoplasm of control (d)-SH-SY5Y cell groups exhibit a pronounced high intensity of PGP9.5 expression, whereas the

ones treated with MPTP display a significantly diminished intensity in their cytoplasm, indicative of neurite degeneration. The quantitative

analysis of fluorescence ratio of PGP9.5/DAPI, was conducted on a sample size of n = 5. The intensity range was set from 0 to 255, where

0 corresponds to the darkest shade, and 255 represents the lightest shade.

2004 GOKSU ET AL.
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Harry, 2011), which is the second most common cause of
ND after AD. PD is primarily characterized by the loss
of dopaminergic neurons in the SNpc, yet the precise
molecular mechanisms underlying neurodegeneration in
PD remain incompletely understood. Nevertheless, it is
well-established that various pathophysiological mecha-
nisms, including α-synuclein aggregation, inflammation,
oxidative stress, mitochondrial dysfunction, and activa-
tion of apoptotic pathways, are implicated as causative
factors (Aarsland et al., 2017). In patients with PD, the

expression of enzymes responsible for generating harmful
oxygen species, such as NADPH oxidase, induced
nitric oxide synthase (iNOS), and myeloperoxidase, is
elevated in the SNpc (Birben et al., 2012). The generation
of reactive species can activate microglial cells, which
are resident macrophage-like cells and serve as the
initial and primary form of active immune defense in the
CNS. Activated microglial cells can release proinflamma-
tory cytokines such as TNF-α, IL-1β, and IL-6, all of
which attract lymphocytes into the inflammatory process.

F I GURE 6 (a–e). Representative images for

apoptotic nuclear assessment with Hoechst 33342

staining of (d)-SH-SY5Y cells after 24 h incubation

with non-activated MG CM as control (a), activated

MG CM (b), SynVIP (10�7 M)-treated activated MG

CM (c), LentiVIP (25 MOI)-infected- activated MG

CM (d). (*represents apoptotic cells). The number

of apoptotic cells were counted and averaged from

five areas. The percentage of apoptotic cells is

represented as a histogram (e). Data are expressed

as mean ± SEM (n = 5). (*p < 0.05 as compared

with the non-activated MG CM treatment as

control; #p < 0.05 as compared with activated MG

CM treatment). Observation was made under a

fluorescent microscope at �20 objective [scale

bar = 20 μm]. [activated MG CM = conditioned

media of microglia activated with 5 μg/ml LPS].

GOKSU ET AL. 2005
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Furthermore, these cytokines can indirectly stimulate
excessive production of ROS and pro-inflammatory
cytokines or directly induce receptor-mediated cytotoxic-
ity (Dushanova, 2012). Clearly, microglial cells play
active roles in the pathogenesis of PD, as well as AD,
multiple sclerosis and autism (Block et al., 2007;
Goldmann & Prinz, 2013; Hong et al., 2016; Qian &
Flood, 2008; Ransohoff & Perry, 2009; Takano, 2015;
Zhan et al., 2014).

Inhibiting abnormal microglial activation, reversing
apoptotic processes, or reducing oxidative stress may rep-
resent effective strategies in prevention or treatment of
such diseases (Slemmer et al., 2008). In this context,
many antioxidant compounds have been investigated to
prevent neurodegenerative disorders by scavenging of
ROS (Slemmer et al., 2008; Suematsu et al., 2011). Given
that the immunomodulatory and antioxidant properties
of VIP in both in vivo and in vitro models of ND, that
have been previously documented, there is substantial
potential for its use in the treatment of such diseases
(Abad & Tan, 2018; Delgado & Ganea, 2013). In this
regard, VIP induces brain-derived neurotrophic factor

and activity-dependent neuroprotective protein, which
are growth factors involved in neuroprotection (Rangon
et al., 2006).

Recent reports have highlighted the modulatory
effects of VIP on CNS function in conditions such as
multiple sclerosis, stroke, and AD (Fernandez-Martin
et al., 2006; Song et al., 2012; Yang et al., 2015). How-
ever, VIP’s clinical efficacy is often limited because of
several factors, including its vulnerability to endopepti-
dases. To overcome these limitations and explore the
clinical applicability of VIP, structural modifications of
VIP were investigated, identifying shorter active VIP
fragments that enhanced its neuroprotective activity
(Deng & Jin, 2017). Another option to ameliorate deficits
of traditional VIP treatment is application of gene
therapy which has the potential to treat human diseases
with a single injection.

In recent years, several gene therapy modalities for
different types of ND have been progressed into clinical
development (Martier & Konstantinova, 2020). Within
clinical trials involving patients with PD, innovative gene
therapy vectors expressing neurotrophic factors, like glial

F I GURE 7 (a and b) The TGF-β1 levels in CM of microglia that were compared among non-treated (control), treated with LPS

(5 μg/ml) and/or SynVIP groups (a), that were compared among non-treated (control), transduced with LentiVIP (5 and 25 MOI)/LentiLacZ

(25 MOI) (b). The levels of TGF-β1 were assessed in comparison to the control. The presented data represent the mean ± S.E.M. from five

independent experiments, each consisting of one sample, expressed as a percentage relative to the control (*p < 0.05, compared with the

untreated cells as control, #p < 0.05, as compared among treatment groups). (for detailed timepoints of applications, see Section ‘2.3.3.
Experimental design’ and ‘Graphical abstract’).
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cell-derived neurotrophic factor neurturin (NTN) and
glial cell line-derived neurotrophic factor (GDNF) have
been explored. The rationale behind delivering these

neurotrophic factors was to provide support to the degen-
erating neuronal population rather than targeting specific
causative pathological molecular pathways. Although the

F I GURE 8 (a–d). Changes in TGF-β1 and NO levels, and total oxidant/antioxidant capacity in CM of (d)-SH-SY5Y cells. MG CM were

collected from non-activated microglial groups or activated microglia (after treatment with 5 μg/ml LPS) alone or in combination with

5 MOI LentiVIP or 25 MOI LentiVIP/LentiLacZ. Subsequently, these conditioned media were applied to (d)-SH-SY5Y cells for a duration of

24 hours. Following this exposure, the levels of TGF-β1 (a), NO (b), the Total oxidant (c) and Total antioxidant capacities (d) in (d)-SH-SY5Y

cell CM were measured. The presented data represent the mean ± S.E.M. from five independent experiments, each consisting of one sample,

expressed as a percentage relative to the control (*p < 0.05 as compared with the untreated cells as control, #p < 0.05, as compared with the

activated MG CM treated group). (for detailed timepoints of applications, see Section ‘2.3.3. Experimental design’ and ‘Graphical abstract’).
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delivery of these neurotrophic factors via AAV was well-
tolerated in patients, their efficacies remained unclear.
Nevertheless, these studies played a crucial role in
demonstrating the feasibility and safety of intraparenchy-
mal gene therapy delivery directly into the human brain
(Björklund et al., 2000; Marks et al., 2008; Marks
et al., 2010).

Today lentiviral vectors are known to be the most
potent of all integrative vector systems (Zufferey
et al., 1998). Among the various viral vectors tested, the
latest generation of lentiviral vectors stands out as some
of the safest and most efficient tools for achieving stable
gene transfer. These vectors possess the capacity for
sustained, long-term gene expression, making them valu-
able for addressing complex ND (Robbins & Ghivizzani,
1998). The mentioned advantages justify the use of
lentiviral vectors for delivering the VIP transgene in the
treatment of ND (Erendor et al., 2020; Tasyurek et al.,
2018). Recently, the therapeutic efficacy of lentivirus-
mediated VIP gene delivery was explored in mouse
models of both Type 1 and Type 2 diabetes mellitus.
LentiVIP delivery not only enhanced insulin sensitivity
and glucose tolerance in diet-induced obese Type 2
models (Tasyurek et al., 2018), but also improved glucose
tolerance, reduced hyperglycemia, and prevented weight
loss in streptozotocin-induced Type 1 diabetic models
(Erendor et al., 2020).

Additionally, Cobo et al. reported beneficial effects of
LentiVIP gene therapy in a mouse model of chronic
multiple sclerosis, where LentiVIP-infected mesenchymal
stem cell treatment reduced astrocyte activation and
decreased neuronal cell death (Cobo et al., 2013).
Furthermore, several studies have illustrated the poten-
tial of lentivirus vector-based gene therapies for addres-
sing ND, despite the mixed outcomes observed in some
clinical studies (Björklund et al., 2000; Martier &
Konstantinova, 2020). The utilization of lentivirus as a
delivery tool has been demonstrated to be both safe and
effective in clinical trials. To date, clinical trials employ-
ing these vectors have not raised concerns related to
integration-induced mutagenesis. Notably, in a mouse
model of severe rheumatoid arthritis, a single injection of
LentiVIP was found to reduce autoimmune and inflam-
matory responses, resulting in highly effective treatment
with complete regression of established disease (Delgado
et al., 2008). In a separate study conducted by the same
research team, a single administration of dendritic cells
transduced with LentiVIP during differentiation from
bone marrow cells was proven to be therapeutic when
administered before the onset of experimental autoim-
mune encephalomyelitis (Toscano et al., 2010).

In our study, we investigated the protective effects of
VIP through lentivirus-mediated VIP gene delivery and

SynVIP treatments against the toxicity of microglial
secretome and MPTP-induced neurotoxicity (Javitch
et al., 1985; Notter et al., 1988; Westlund et al., 1985)
using an in vitro cell culture model. Initially, we
demonstrated that the transduction of microglial cells
with LentiVIP resulted in a robust expression of VIP.
Subsequently, we observed that LentiVIP transduction of
microglia exerted protective effects against cell viability
loss induced by both neurotoxin and the secretome of
activated microglia. Furthermore, LentiVIP transduction
of microglia led to increased expression of the anti-
inflammatory molecule TGF-β1 from microglia. Neuron-
like cells treated with CM from LentiVIP -transduced
microglia exhibited decreased NO levels and TOC, along
with elevated levels of TGF-β1 and TAC, providing
evidence of the antioxidative properties associated with
LentiVIP transduction.

It is well-established that TGF-β is typically found at
low levels in the brain until inflammation occurs (Lu
et al., 2005). There is also evidence supporting the antiin-
flammatory role of TGF-β and its significance in neuro-
protection (Brionne et al., 2003; Lu et al., 2005; Nagai
et al., 2001). Therefore, the stimulatory effect of VIP on
TGF-β1 expression appears to be a crucial indicator of its
neuroprotective actions. In line with our findings, Reyn-
olds et al. demonstrated the immunomodulatory and
neuroprotective activities of VIP (Reynolds et al., 2010).
Additionally, VIP has been shown to induce the
development of regulatory T cells (Treg) with concomi-
tant anti-inflammatory and neuroprotective responses in
MPTP-intoxicated mice (Delgado & Ganea, 2003c;
Ganea & Delgado, 2002; Reynolds et al., 2010).

Furthermore, we observed that LentiVIP exerted not
only an anti-apoptotic effect, but at the same time a cell-
proliferative effect on neuronal cells. Namely, the
decrease in the survival rate of (d)-SH-SY5Y cells because
of the application of activated MG CM, has been
improved by LentiVIP (and also by SynVIP), as verified
by MTT results. On the other hand, our apoptotic nuclear
analysis showed that LentiVIP infected (and also SynVIP
treated) activated MG CM caused lesser apoptotic cell
percentage of (d)-SH-SY5Y cells when, compared with
high apoptotic cell number because of activated MG
CM. However, the MTT results we obtained were reflect-
ing a very high cell survival rate in VIP groups above the
anti-apoptotic action of VIP, indicating also a cell prolif-
erative effect of this peptide. Similar findings have been
reported concerning the cell-proliferative and anti-
apoptotic effects of LentiVIP by the study of Erendor
et al. in which LentiVIP has been demonstrated to sup-
press inflammation and apoptosis in pancreatic beta cells,
induced by diabetes, and even promoted cell proliferation
(Erendor et al., 2020).

2008 GOKSU ET AL.

 14609568, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.16273 by A

kdeniz U
niversity, W

iley O
nline L

ibrary on [24/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



It is crucial to underscore the comparable results
observed in our study between SynVIP and LentiVIP
treatments. Although the outcomes of SynVIP treatment
demonstrated similarity to those of LentiVIP, it is note-
worthy that LentiVIP gene therapy emerges as a poten-
tially advantageous option. Specifically, when the VIP
gene was delivered into microglial cells via Lentivirus,
and VIP expression was compared with SynVIP, the VIP
expression resulting from low-dose SynVIP treatment
closely resembled that achieved through high-dose Lenti-
VIP transduction, as illustrated in Figures 1a and c.

It is important to acknowledge that VIP is a peptide
prone to rapid degradation by DPP-4. Therefore, if benefi-
cial effects are observed even at lower expression levels,
effective treatment might not necessitate higher concen-
trations of LentiVIP. Furthermore, the integration of the
VIP gene into the microglia genome, characteristic of 3rd
generation lentiviral vectors, facilitates permanent gene
transfer. In contrast, SynVIP requires regular administra-
tion, while LentiVIP, utilizing the CMV promoter, offers
sustained low-level but long-term expression.

However, it is essential to clarify that the primary
objective of this publication was not a direct comparative
analysis between the effects of SynVIP and LentiVIP.
Instead, our focus was on evaluating the in vitro efficacy
of microglial transduction using lentiviral gene therapy
vectors encoding VIP and investigating the protective
effects of LentiVIP against activated microglial toxicity.
We successfully substantiated these aims in this study.
Aforementioned knowledge emphasizes the potential
advantages of LentiVIP gene therapy over SynVIP.

Furthermore, our results indicated the antioxidant
effects of VIP, as the levels of NO and TOC were signifi-
cantly lower in the CM of neuronal cells exposed to
LentiVIP-infected or SynVIP treated microglial secre-
tome. These findings support a previous study that has
reported that VIP effectively blocked microglial activation
and the production of neurotoxic factors, including TNF-
α, IL-1β, and NO, in a model of PD and brain trauma
(Delgado & Ganea, 2003b; Delgado & Ganea, 2003c). The
elevated levels of NO and oxidant molecules, along with
inflammatory cytokines in MG CM may serve as indica-
tors of the toxicity of the microglial secretome. Indeed,
the activation of microglia involves the secretion of mul-
tiple cytokines/chemokines and reactive species (Graeber
et al., 2011). Activated microglia can generate reactive
oxygen and nitrogen species, including NO, primarily
through the upregulation of the inducible form of iNOS,
also known as NOS2 (Dello Russo et al., 2018). Previous
studies have also reported that IL-1β and NO which are
derived from microglia could be related to neuroinflam-
mation and neuron injury in the CNS (Black &
Waxman, 2012; Ransohoff & Perry, 2009; Sperl�agh &

Illes, 2007; Yang et al., 2016). VIP has also been found
effective in preventing LPS-induced neurodegeneration
and microglial activation in in-vivo neuroinflammation
models (Delgado & Ganea, 2003b; Delgado & Ganea,
2003c), as well as in suppressing neuronal death associ-
ated with ND in both in vitro and in vivo settings
(Dejda & Soko, 2005).

In our study, in order to make more accurate evalua-
tions, we should consider those two separate effects of
CM of ‘VIP-treated microglia’ on (d)-SH-SY5Y cells:
1-The indirect ‘deactivation/detoxifying’ effect of VIP on
microglia (less inflammatory and cytotoxic factors and
more anti-inflammatory mediators in CM). 2-Effects of
VIP that is secreted by microglia and found in CM. It is
necessary to take into account these both effects when
VIP-treated MG-CM is applied on (d)-SH-SY5Y cells.

While this study primarily evaluates the indirect
‘detoxifying’ effect of VIP on microglia, it is relevant to
briefly allude to ongoing research from our laboratory.
Specifically, in a separate investigation currently
undergoing further analysis, we explored the protective
potential of direct VIP application against degeneration
of (d)-SH-SY5Y cells induced by MPTP/activated MG
CM. Our preliminary results indicate that, following the
application of activated MG CM, treatment with SynVIP
at a concentration of 10�7 M significantly increased the
mean viability rate of (d)-SH-SY5Y cells compared with
the group treated with activated MG CM alone. Intrigu-
ingly, direct application of VIP did not correct the effects
of microglial toxicity to the extent of the results we
obtained in this study (the very high rate of improvement
in (d)-SH-SY5Y cell viability).

Our overall results show that VIP’s effect on the neu-
ron, is both direct and indirect in terms of function and
viability. The presence of VIP within the MG CM also
provides extra benefit on (d)-SH-SY5Y cells. From here,
the effect of VIP against neurodegeneration should be
evaluated based on the sum of both effects. One of the
limitations of this study is that we were not able to test
both of these effects in our study. We plan more
advanced models in the future involving application of
VIP-blocking antibody in the experimental design, so
that, VIP’s effect on the reduction of activated MG CM
toxicity and the direct effects of it will be more clearly
distinguished from each other.

Furthermore, our in vitro neurodegenerative model,
which involves activated microglia, may replicate and
simulate findings observed in ND. For instance, in AD,
microglia surrounding plaques undergo a morphological
change from ramified to amoeboid and exhibit positive
staining for activation markers (Bolmont et al., 2008;
Itagaki et al., 1989). Likewise, a substantial number of
activated microglia are present in the CNS and spinal
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cords of patients with amyotrophic lateral sclerosis (ALS)
and in SOD1 mouse models of ALS (Hall et al., 1998;
McGeer et al., 1993). Consequently, this model holds
promise as a faithful representation of the in vivo envi-
ronment where neurons interact with activated micro-
glia, as observed in ND. It is well-suited for conducting
drug trials.

In summary, our study highlights the promising ther-
apeutic potential of LentiVIP and SynVIP as valuable
strategies in mitigating neuronal damage caused by
neurotoxins and microglial secretome, offering hope for
effective interventions in the context of ND.

Incidentally, it would be useful to mention here the
importance of using VIP in other diseases, as well. A
potential therapeutic role of a VIP agonist have been
reported on asthma, pulmonary hypertension, chronic
obstructive pulmonary disease, cystic fibrosis, and sar-
coidosis. Simultaneously, limited clinical trials have
reported that novel stabilized inhaled VIP agonists with
less side effects are promising alternative drug candidates
(Mathioudakis et al., 2013). These agonists have been
proven to exhibit immunoregulatory effect in sarcoid
alveolitis in humans and been proposed as an attractive
future therapy to control augmented immune responses
in lung disorders (Prasse et al., 2010). Moreover, Avipta-
dil, a SynVIP has been shown to be effective in the treat-
ment of sepsis- related severe respiratory failure and
some other lung injuries. Ttrials are still ongoing to
clarify the effectiveness of this drug in the treatment of
COVID 19 (Lahiry et al., 2022).

Lastly, BBB is one of the most important challenges
in the treatment of ND, including PD. Because of the
presence of the BBB, that involves endothelial cells,
astrocytes, pericytes, and basal membranes providing
enclosure of the capillaries, only small lipophilic mole-
cules can enter the brain. Large hydrophobic charged
molecules can enter through facilitated transport,
whereas pharmacophore designed drugs and dopamine
are restricted for entry. The use of nanotechnology over-
comes the ineffectiveness of CNS-related disorder treat-
ments because of the BBB. By this technology, the
parenteral route of drug administration enables direct
systemic exposure of nanoparticles, and provides the
complete bioavailability of the drug, at the same time
(Shankar et al., 2021).

Gene therapy has the potential to effectively treat
ND, because it has potential to provide direct correction
of pathogenic mechanisms, and also to achieve neuro-
protection/restoration, or diminish symptoms at the
same time (Sudhakar & Richardson, 2019). Since the
CNS has a large vascular structure, it would be easy to
deliver gene therapy vectors if the BBB was not present.
However, efforts continue to overcome the limitations

imposed by BBB. An effective method for this is the
transport of viral vectors across the BBB, achieved by
temporary disruption of the endothelial tight junctions
of the brain microvasculature; or by using receptor-
mediated transcytosis, which is in phase I clinical trials
in humans (Fu & McCarty, 2016). Recently, accurate
vector delivery has been achieved by Interventional
MRI-guided convection-enhanced delivery (iMRI-CED),
which is an advanced neurosurgical technique, and this
technique promotes the translation of preclinical thera-
pies, being developed for ND, into clinical therapies
(Sudhakar & Richardson, 2019).

6 | CONCLUSION AND
LIMITATIONS

Our study sheds light on the promising therapeutic
potential of LentiVIP in the context of ND, particularly
PD. This is attributed to its anti-inflammatory, antioxi-
dant, and anti-apoptotic capabilities against both MG
CM/neurotoxin -induced neurodegeneration. Moreover,
the observed reduction in neurotoxicity in our in vitro
model suggests that VIP-based gene therapy approaches
may be clinically applied in treating ND and show
long-term promise for treating a wide range of CNS
diseases.

Considering these findings, it is imperative to further
investigate the therapeutic efficacy of LentiVIP in ND
using advanced in vitro models, such as induced pluripo-
tent stem cell-derived dopaminergic/motor neuron
models, as well as in vivo ND models. Since our study
only partially predicts the in vivo behavior of neuronal
cells, our initial observations should be validated through
further investigations involving acutely isolated cells,
organoids, or other animal models that allow for a more
precise quantification of in vivo behavior. Further
exploration through advanced techniques at the molecu-
lar level is also essential to unravel the precise
molecular mechanisms underlying LentiVIP’s effects.
Given that this peptide exhibits therapeutic potential for
neurodegenerative disorders, the role of LentiVIP in neu-
roprotection worth further investigation for the develop-
ment of innovative treatments.
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